Floer Cohomology and Arc Spaces
Mark Mclean
Abstract: Let f be a polynomial over the complex numbers with an isolated singular point at the origin and let d be a positive integer. To such a polynomial we can assign a variety called the dth contact locus of f. Morally, this corresponds to the space of d-jets of holomorphic disks in complex affine space whose boundary `wraps' around the singularity d times. We show that Floer cohomology of the dth power of the Milnor monodromy map is isomorphic to compactly supported cohomology of the dth contact locus. This answers a question of Paul Seidel and it also proves a conjecture of Nero Budur, Javier Fernández de Bobadilla, Quy Thuong Lê and Hong Duc Nguyen. The key idea of the proof is to use a jet space version of the PSS map together with a filtration argument.
algebraic geometrydifferential geometrygeometric topologysymplectic geometry
Audience: researchers in the topic
Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.
The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.
| Organizers: | Jonny Evans*, Ailsa Keating, Yanki Lekili* |
| *contact for this listing |
